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We suggest a method for determining the harmonic linearization coefficient 

of a nonlinearity in a quasi-linear self-oscillating system from the amplitude 
variation curve by means of a generalized interpolation. We prove a theorem 

which in the analytical case guarantees the uniform convergence of the inter- 
polation process to the desired function. The determination of the dynamic 

characteristics of nonlinear objects was examined in [l]. Thanks to the very 
well developed technique for applying the harmonic linearization methd [2,3], 

the determination of the harmonic linearization coefficients for nonlinear ob- 
jects has a particular significance. 

We consider the equation of 3 quasi-linear self-oscillating system 

y” + 0”y = Ef (Y)Y’ (1) 

where E > 0 is 3 small parameter. It is known [4] that the first approximation to the 
solution of (1) to within quantities of order as is Y = I cos 9, where 11, is the uniformly 
rotating phase of the oscillations, while the amplitude of the oscillations is found from 
the equation I’ = & @ (3, (2) 

If self-oscillations with a steady-state amplitude b are self-excited on system (l), then 

z = 0 is an unstable equilibrium position for (2), while 1: = b is a stable one ; here 

@’ (0) > 0, Q’ (b) < 0 (3) 

Let @ (r) be a continuously differentiable function for z E LO, b] and has only simple 
roots, and let conditions (3)be fulfilled. Then we can write (2) as 

z. = I (b - z)cp (2) (4) 

where the small parameter c > 0 has been taken into the function v. Moreover, 

9 (z) > 0, for all x E [(A 61 

We note that the nonlinearity in (1) is not determined statically, and (b - z)cp tz) is 
the harmonic linearization coefficient for the system’s nonlinearity. Having obtained 
experimentally 3 procedure for establishing self-oscillations in system (1) and assuming 
that the amplitude variation curve of the oscillations is the solution of (4).r (t), z (0) = 
zoE(0.b) which, under condition (S), increases strictly monotonically for t E 16, KC), we 
can find the right-hand side of (4)from the curve x (t) by means of an approximate dif- 
ferentiation and a subsequent interpolation. We propose a more effective way of finding 
the right-hand side of (4), using the information contained in the qualitative pattern of 
the behavior of the solutions of (4). 
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Theorem . For an Eq.(4) satisfying condition (5). suppose that we know an integ- 

ral curve t (z), t (CT,,) = 0, where r0 E (0, b/Z) is a small initial perturbation . Let the 

analytical continuation of the function t (2) onto the complex plane yield a function 
which is regular inside an ellipse with foci at the points zO, b - x0 and with a semiaxis 

sum of (b/2 - q,)R, where R > 1 is chosen in such a way that the points 0, b do not 

belong to this ellipse. Then, on the interval [ro, b - z,,] we can represent the function 

‘P (z) as cF(4=1/Pn(d+%w 
n 

Pn (z) = 2 dixi 
i=O 

z,(x)=0 as n+c=, z E [zo, b - ~1 

and the estimate 

1 q (z) - 1 / P, (2) I < M i P”+l (1 < p < R, M = const) 

is valid. Here the coefficients P, (2) are uniquely defined by the values of t (2) from 

the interval IX,,, b - ~~1.’ 

Lemma . Let f (2) be an infinitely differentiable function for 2 E 10, i] and let 

f’“j (X) # 0 for all z E (0, 1), n = 1, 2..., while f (0) = 0. Then for any n the func- 

tions f, x, x2,. . . , xm form a Chebyshev system on the interval (0, 1). 

Proof. Let us prove that for any set of values xi, x2, . . . , x,,,~, ri E (0, I), xi # xi 
f6i i $5 j the determinant A, of order n + 1, whose i th’row has the form 

f (Xi) Xi Xi' . . * Xin 

is nonzero for any n = 1,2, . . . We prove this by induction. 
Let Ai = 0. Then there exist numbers hi, ? !, not equal to zero, such that they serve 

as the coefficients of a vanishing linear combination of the columns of determinant Ai. 
We consider the function F (r) = hi f (2) t &.c. It has the three roots 0, zi, 22 on the 

interval 10, 1). By Rolle’s theorem F’ (2) = hi f(x) $ ha has two distinct roots &. 
E, E (0, 1). Then, the determinant f’ (&) - f’ (EJ = 0 and f” (f) = 0 for 4 E (61, 
&), which contradicts the hypothesis. Hence it follows that A1 # 0. 

Let A ,r_i i O.Assume, despite the lemma’s assertion, that A, = 0 . Then the relation 

&S, i- * * * + h,l s71+1 = 0 ,?xists between the columns Si of the determinant A,, 

moreover, hi # 0, since otherwise a certain Vandermonde determinant would be zero, 

and h,,, # 0 by the inductive assumption. We consider the function F (2) = Ad (x) + 

&x + . . . -t ?v,iL1~‘L. The points U, xi, . . . , xrLfl are the roots of this function. Then 

F!“)( 2 )= h,f(“)( I ) f n! h,,, has two roots Z,,, $ E (0,l) and f”L+l)(c) = 0 for some 

4 E (0. 1). The contradiction obtained proves that An # 0 and, together with this, the 

lemma. 
We proceed to the proof of the theorem. We note that 

.u 

s 

dz 
1 (2) = 

2 (b - 2) cp (z) 
.I’0 

and we set l/(~ (z) = f (2). It is obvious that f (z), as a function of a complex variable, 
is regular in the same region that t (2) is, since this region does not contain the pints 

0 and b. On the interval [x,, b - x0] we introduce an infinite triangular matrix of 

Fejer interpolating nodes [S] in me following manner: k=i,2,...n+l 
2K (li) = x0 f (b / 2 - z 1) [I - ens ti(Zk - l)/ 2 (n + 1) 1, 

n-=1, z:... 



We construct an interpolation proce,ss with an n m-degree polynomial P, (r) by setting 
h’ 

t (Zk) -= \ P,, (z) i 2 (0 - z) dz, li==l,Z,...n+-1 
. 

Here and subsequently we omit the superscripts in the node designations. 
We obtain a linear system of equations in the coefficients of the polynomial P, (z) = 

d, + d,z + . . . + d,z”. The determinant of this system can be represented as the pro- 
duct of a constant factor by a determinant A n’ of order n $ 1, each ith row of which is 

In zi / 50 In (b-x0) /(b - xi) xi - x0 . . . xi”-’ - x:-l 

The determinant A,,’ is nonzero for any n. This is verified by arguments exactly repea- 
ting those in the proof of the lemma, moreover, on the basis of the lemma, h, and 1, 

are nonzero, and the determinant 

:;” (b -&)-” - 5,” (b - [I)_” 

where E1 # tz and 5r, ET E (G b - x,), does not equal to zero. Thus, for any n the 

coeffi&nts of polynomial P,, are uniquely determined by the values t (q). 
The polynomial constructed is an interpolation polynomial for f (z) since 

T xk 

f (zt) = c” f (z) /z (b - z) dz ~= [ P, (z) /z (b - z) dz, ~=1,2,...n-J-1 

-23 50 
moreover, the interpolating nodes for the function f (z) lie strictly between the nodes zk. 

The nodes zk selected are Fejer nodes, therefore, the interpolating nodes for function 

f (z) also are Fejer nodes, which follows from [5] (Lemma 1, p.29). On the basis of the 
corollary to Theorem 1 (see [5], p. 36) we obtain the convergence of the interpolation 
polynomials P, to the function f with the estimate IP, (s) - f (2) 1 < MI/P”+’ for all 
z E Ix,, b- z,], where 1 < p < RR, fill = const. The estimate in the theorem is ob- 

tained from the continuity and from the positiveness of f (z) on the interval IS,,. b - Z-J. 

Note. The interpolation process constructed ensures a sufficiently rapid convergence 
for a sufficient smoothness of the function t (z) and for a special choice of the nodes . 
For a practical determination of the functionq (x) it may be advisable to seek for 1 (CC) 

the generalized polynomial of best approximation for some fixed degree n , 

Q, (2; 5) == i c,+, (5) 
k-0 

by minimizing some criterion for the proximity of the functions t (CC) and QT1. (t; x) on 
the set of all known values of t (2);. here the wk (c) are linearly independent functions. 
In practice this is a series of discrete values of instants of time, and thedetermination 
of the best &, (C CC) can be successfully effected by mathematical programing methods. 
The function (b - z) (co + clx + . . . $_ ~~3)~~ is an approximate representation of 
the harmonic linearization coefficient. 

The author thanks N. M. Matveev and L. B. Klebanov for their attention. 
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We investigate the relations between the position and the program absorption 

sets. We cite an example in which the construction of the position absorption 
set [l- 31 is reduced to the determination of a finite number of program ab- 
sorption sets [4, 51. 

It is known that in the general case the construction of a position absorption set leads 

to the determination of a countable sequence of program absorption sets [l, 3, 6, 7-j. 
Also well known are the cases when the position absorption set is determined by one 
program absorption operation p, 3, 5. 81. We consider a linear differential game of 
pursuit. Let the motion of a conflict-controlled system be described by the equation 

dx / dt = A (t)a + u - u (1) 

Here z is the n-dimensional system phase vector ; A (t) is an n X n matrix with coef- 

ficient depending continuously on t ; u and v are the controls of the first and second 

players, respectively, whose realizations are constrained by u lt] E Pt, v ItJ E qt, where 
the closed convex sets Pt and Qt depend piecewise-continuously on t. 

In the phase space R, we are given a set M which is usually assumed closed and con- 
vex, The solution of the pursuit problem consists of having to construct the first player’s 
strategy which guarantees that the phase point z [t] is taken onto the aim set M. It is 
assumed that information on the game position (t, 2 ItI) realized is available to the pur- 
suer. Thus, the pursuit strategies are certain functions U = U (t, 2). The classes of play- 
ers’strategies, containing the solution of the position differential game, were introduced 

in [2. 71. 
Let us briefly describe certain elements of extremal construction used in solving position 


